Category Archives: Data Visualization

SVG fast scaled overlay on Leaflet 1.0 and 0.7

SVGScaled SVG can be drawn on map in much more faster way than traditional approaches, at least for points. Traditional approach re-position each element to fit into the view of the map, however SVG is “scalable” so we can use it and it performs much more faster for zoom-in/out.

Few considerations:

  1. SVG itself define viewport by its coordinate space, all outside of this viewport is usually  clipped, so it is important to keep SVG viewport in-line with the viewport of the map. There are approaches that resizes SVG as you zoom-in (here), and while it works, it has a problems in deep-zooms when you need to move on map (actually you move  giant SVG based on the zoom )
  2. translating LatLon to absolute pixel values (like here used for WebGL) is possible solution, however IE and FF has problems with large numbers for transoform (>1 M), So we need to get SVG elements in view coordinates and translate them.
  3. Having some track of bounding box of all elements like again used here should be avoided (SVG or its group element knows about extension of the elements it holds)
  4. So while we keep SVG in the viewport, we need to compensate any shift and zoom by translating <g> (group) of all elements.
  5. So in leaflet when map  moves, SVG is translated back to its original position while <g> is translated forward to reflect the map movement
  6. We need to keep track of LatLon position of either map center or one of the corner – we use topLeft corner.
  7. Leaflet doesn’t do  precise enlargement and rounds view points because of some CSS troubles on some devices (noted here). We need to patch two translating functions in Leaflet to get this right (so SVG enlargement will be aligned with map)… but I need to look on this again, best would be to not patch Leaflet of course.

most important things happen in moveEnd event:

 


 var bounds = this._map.getBounds(); // -- latLng bounds of map viewport
 var topLeftLatLng = new L.LatLng(bounds.getNorth(), bounds.getWest()); // -- topLeft corner of the viewport
 var topLeftLayerPoint = this._map.latLngToLayerPoint(topLeftLatLng); // -- translating to view coord
 var lastLeftLayerPoint = this._map.latLngToLayerPoint(this._lastTopLeftlatLng); 

 var zoom = this._map.getZoom();
 var scaleDelta = this._map.getZoomScale(zoom, this._lastZoom); // -- amount of scale from previous state e.g. 0.5 or 2
 var scaleDiff = this.getScaleDiff(zoom); // -- diff of how far we are from initial scale 

 this._lastZoom = zoom; // -- we need to keep track of last zoom
 var delta = lastLeftLayerPoint.subtract(topLeftLayerPoint); // -- get incremental delta in view coord

 this._lastTopLeftlatLng = topLeftLatLng; // -- we need to keep track of last top left corner, with this we do not need to track center of enlargement
 L.DomUtil.setPosition(this._svg, topLeftLayerPoint); // -- reset svg to keep it inside map viewport

 this._shift._multiplyBy(scaleDelta)._add(delta); // -- compute new relative shift from initial position
 // -- set group element to compensate for svg translation, and scale</pre>
 this._g.setAttribute("transform", "translate(" + this._shift.x + "," + this._shift.y + ") scale(" + scaleDiff + ")");

Test page / Gist : http://bl.ocks.org/Sumbera/7e8e57368175a1433791

To better illustrate movement of SVG inside the map, here is a small diagram of basic SVG states:svgpositioning

Smart M.App

  Recent months I have been programming  “Green Space Analyzer” web app that shows modern  approach to visualize and  query   multi temporal geospatial data.  User see information in a form he can interact with and discover new patterns, phenomena or information just by very fast ‘feed-back’ of the UI response on the user input.  When user selects for example certain area, all graphs instantly animates transition to reflect selection made, this helps to  better  understand  dynamics of the change. Animation can be seen everywhere – from labels on bar chart, through colors change of the choropleth up to title summary. it creates subtle feeling of control or knowing what has changed and how it has changed. At HxGN 15 conference in   hexagon geospatial keynote, CEO Mladen Stojic showcased it as part of the  vision  called Smart M.App, worth to look at (at 52:40 starts Smart M.App demo):

 

my Smart M.App  ‘world tour’:

 

 

 

WebGL polygons fill with libtess.js

kraje

Update 1.6.2015: geojson-vt seems to do great job in tiling and simplifying polygons. Check this post.

Update 18.1.2015: Vladimir Agafonkin from MapBox released earcut.js – very fast and reliable triangulation library. Worth to check. Video available here:

 

 

Original post:

Brendan Kenny from Google showed  here how he made polygons using libtess.js on Google Maps, so I have tried that too with single large enough polygon on Leaflet with CZ districts.  libtess.js is port from C code . Neither plntri.js (update: see also comments for plntri v2.0 details)  nor PolyK.js were able to triangulate large set  of points as libtess.js.

Update:  I looked on poly2tri.js  too with following results:

I could run 2256 polygons (all together > 3M vertexes)  with poly2tri  16 701 ms  vs 127 834 ms (libtess), however I  had to dirty fix  other various errors from poly2tri (null triangles or “FLIP failed due to missing triangle…so some polygons were wrong..), while  libtess was fine for the  same data.

Here is  a test :  3 M vertexes with 1 M triangles have been by generated by libtess in 127s . poly2tri took 16s.  Drawing is still fine but it is ‘just enough’ for WebGL too.

 

 

key part is listed below:


tessy.gluTessNormal(0, 0, 1);
tessy.gluTessBeginPolygon(verts);

tessy.gluTessBeginContour();

//--see blog comment below on using Array.map&lt;/span&gt;&lt;/strong&gt;
data.features[0].geometry.coordinates[0].map(function (d, i) {
pixel = LatLongToPixelXY(d[1], d[0],0);
var coords = [pixel.x, pixel.y, 0];
tessy.gluTessVertex(coords, coords);
});

tessy.gluTessEndContour();
// finish polygon (and time triangulation process)
tessy.gluTessEndPolygon();

code available here: http://bl.ocks.org/sumbera/01cbd44a77b4283e6dcd

 

There is also EMSCRIPTEN version of the tesslib.c available on github, and I was curious whether this version would increase speed of  computation. I could run it but for large polygons (cca 120 verts of CZ boundary) I had to increase module memory to 64 MB for FireFox.  Tessellata 120T verts in  FF-30 took 21s, IE-11, Ch-36: failed  reporting out of stack memory :(

Getting back to version from Brendan  (no emscripten) I quickly measured same data on browsers: IE-11 21s, Ch-36: 31s,  FF-30: 27s .

Update Oct/2014: Polyline tessellation blog here

Modern data visualization on map

hxgn14 For this year HxGN14  conference  I have prepared a web app  of modern data vizualisation, I have got  inspired by great ideas from Victor Bret and his research and talks for general concept (high interactivity, visualization ) of this app.

It is exciting to see what is possible to do today inside browser and interactivity provided by various open source projects (e.g. leaflet,d3  and its plugins)  and WebGL technology .